

ALTA750GTM

DESCRIPTION DU PRODUIT

L'ALTA750G[™] est un ensemble boîtier de tube à rayons X conçu spécialement pour une utilisation avec les appareils de tomodensitométrie. Cet ensemble boîtier de tube se compose du tube ALTA750G[™] chargé dans le boîtier ALTA750G[™] de Richardson ou rechargé dans le boîtier B-805H de Varex*. L'échangeur de chaleur G de Richardson ou l'échangeur HE-978 de Varex* peuvent être utilisés avec cet ensemble boîtier de tube.

UTILISATION PRÉVUE

Les ensembles tube à rayons X ALTA750G sont conçus pour émettre des rayonnements ionisants. Ils sont destinés à être utilisés en tant que composant d'un système de tomodensitométrie pour des applications diagnostiques et interventionnelles aux rayons X.

INFORMATIONS ET SPÉCIFICATIONS COMPRISES

- Spécifications du tube
- Spécifications de l'ensemble boîtier
- Valeurs volumétriques/scan hélicoïdal
- Caractéristiques d'émission de la cathode
- Schéma du boîtier
- Schéma de câblage
- Consignes d'élimination

Rédigé initialement en anglais

*Ce produit n'est pas affilié à, approuvé par, ou sponsorisé par Varex Imaging.

Richardson Electronics, Ltd et ses filiales se réservent le droit d'apporter des modifications au(x) produit(s) ou aux informations figurant dans les présentes sans préavis. Richardson Electronics décline toute responsabilité quant à toute erreur susceptible de figurer dans le présent document. Aucune partie de ce document ne peut être copiée ou reproduite par un moyen ou sous une forme quelconque sans l'accord écrit préalable de Richardson Electronics, let de la company de

SPÉCIFICATIONS DU TUBE

Valeur nominale de la tension du tube à rayons X	kV	140		
Diamètre de l'anode	mm	200		
Matériau de l'anode		ReW-TZM-C		
Angle de l'anode	Degrés	7		
Dimension nominale du foyer – Petit IEC 60336 Facteur de charge 120 kV x 200 mA	IEC 60336	0,9 x 0,8		
Dimension nominale du foyer – Grand IEC 60336 Facteur de charge 120 kV x 200 mA	IEC 60336	1,6 x 1,4		
Contenu calorifique de l'anode (maximum)	MJ	5,4		
Puissance d'entrée nominale de l'anode – Grand IEC 60613	kW	72		
Puissance d'entrée nominale de l'anode – Petit IEC 06013	kW	42		
Indice de puissance nominale du système de tomodensitométrie – Grand IEC 60613	kW	69,5		
Indice de puissance nominale du système de tomodensitométrie – Petit IEC 60613	kW	42		
Dissipation thermique de l'anode (maximum)	W	12 000		
Courant maximum du filament - Grand	Α	5		
Tension maximale du filament - Grand	V	14,4		
Courant maximum du filament - Petit	А	4,8		
Tension maximale du filament - Petit	V	12,3		

SPÉCIFICATIONS DE L'ENSEMBLE BOÎTIER

Contenu calorifique maximum	MJ	3,6
Dissipation thermique maximum en continu	kW	4,0
Température maximale du boîtier	Degrés C	78
Filtration permanente ₹₹₹ IEC 60522	mm AL	1,0
Limites de température pour le transport et l'entreposage	Degrés C	-20 à 75
Valeurs limites de température de fonctionnement	Degrés C	5 à 40
Poids de l'ensemble	kg	60,5
Rayonnement de fuite	mGy à 140 kV, 29 mA	0,57

SPÉCIFICATIONS ADDITIONNELLES DE L'ENSEMBLE BOÎTIER

Valeurs limites de taux d'humidité pour le transport et l'entreposage : TH 10 % à 90 %
Limites de pression pour le transport et l'entreposage : 70 à 106 kPa
Valeurs limites de taux d'humidité pour le fonctionnement normal : TH 40 % à 80 %
Valeurs limites de pression pour le fonctionnement normal : 70 à 106 kPa
Le degré de protection contre la pénétration d'eau est IPX0.
Mode de fonctionnement : Discontinu
Classification selon IEC 60601-1: Catégorie 1 Type B

VALEURS VOLUMÉTRIQUES/SCAN HÉLICOÏDAL IEC 60613

3Ø 50 Hz

Foyer 0,9 x 0,8 Cible de 7 degrés

Durée d'acquisition	Courant maximum admissible pour le tube (mA)									
de la tomographie	en fonction de l'énergie thermique de départ et des tensions du tube suivantes									
volumétrique	Énergie	thermiqu	e de dépa	rt Éne	Énergie thermique de			Énergie thermique de		
(secondes)		40 %			départ 55 %			départ 70 %		
	100 kV	120 kV	135 kV	100 kV	120 kV	135 kV	100 kV	120 kV	135 kV	
4	300	250	225	300	250	225	300	250	225	
10	300	250	225	300	250	225	300	250	225	
15	300	250	225	300	250	225	300	250	225	
20	300	250	225	300	250	225	300	250	225	
30	300	250	225	300	250	225	300	250	225	
45	300	250	225	300	250	225	300	250	225	
60	300	250	225	300	250	225	250	200	175	
75	300	250	225	300	250	225	225	175	150	
80	300	250	225	300	250	225	200	175	150	
90	300	250	225	275	225	200	200	150	150	

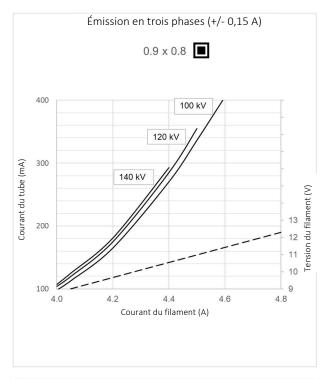
3Ø 50 Hz

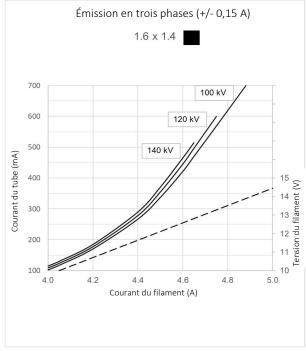
Petit foyer 1,6 x 1,4 Cible de 7 degrés

Durée d'acquisition		Courant maximum admissible pour le tube (mA)								
de la tomographie	en fonction de l'énergie thermique de départ et des tensions du tube suivantes									
volumétrique (secondes)	Énergie	thermiqu 40 %	e de dépa	rt Én	Énergie thermique de départ 55 %			Énergie thermique de départ 70 %		
	100 kV	120 kV	135 kV	100 kV	120 kV	135 kV	100 kV	120 kV	135 kV	
4	670	560	500	670	560	500	670	560	500	
10	670	560	500	670	560	500	670	560	490	
15	670	560	500	670	560	500	640	530	470	
20	670	560	500	670	560	500	610	510	450	
30	600	500	440	600	500	440	440	360	320	
45	540	450	400	480	400	350	320	270	240	
60	450	370	330	380	310	280	260	220	190	
75	410	340	300	310	260	230	230	190	170	
80	380	320	280	300	250	220	220	180	160	
90	350	290	260	270	230	200	200	170	150	

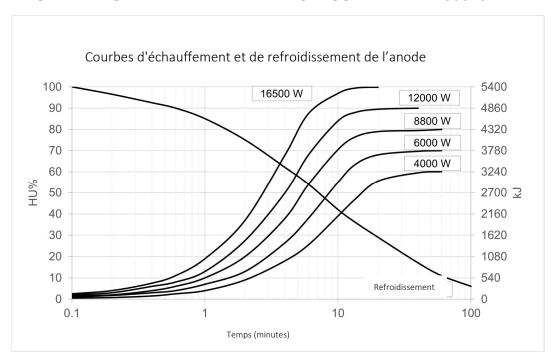
3Ø 100 Hz

Foyer 0,9 x 0,8 Cible de 7 degrés

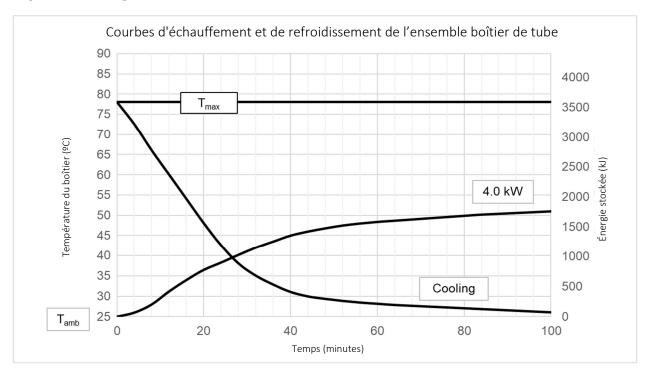

Durée d'acquisition	Courant maximum admissible pour le tube (mA)									
de la tomographie	en fonction de l'énergie thermique de départ et des tensions du tube suivantes								ntes	
volumétrique	Énergie	thermiqu	e de dépa	rt Éne	Énergie thermique de			Énergie thermique de		
(secondes)		40 %			départ 5	5 %	(départ 70 %		
	100 kV	120 kV	135 kV	100 kV	120 kV	135 kV	100 kV	120 kV	135 kV	
4	425	350	300	425	350	300	425	350	300	
10	425	350	300	425	350	300	425	350	300	
15	425	350	300	425	350	300	425	350	300	
20	425	350	300	425	350	300	425	350	300	
30	425	350	300	425	350	300	400	325	300	
45	425	350	300	425	350	300	300	250	225	
60	425	350	300	375	300	275	250	200	175	
75	400	325	300	3000	250	225	225	175	150	
80	375	300	275	300	250	225	200	175	150	
90	350	275	250	275	225	200	200	150	150	

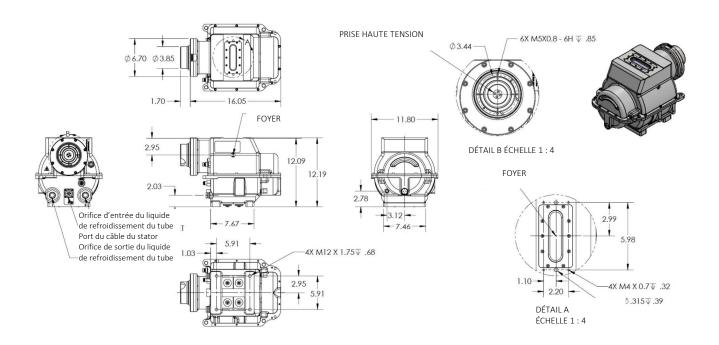

3Ø 100 Hz

Petit foyer 1,6 x 1,4 Cible de 7 degrés


Durée d'acquisition	Courant maximum admissible pour le tube (mA)										
de la tomographie	en fonction de l'énergie thermique de départ et des tensions du tube suivantes										
volumétrique	Énergie thermique de départ Énergie thermique de Énergie						ie thermic	ue de			
(secondes)		40 %				départ 5	5 %	Č	départ 70 9		
	100 kV	120 kV	135 kV	100 kV		120 kV	135 kV	100 kV	120 kV	135 kV	
4	720	600	530	7.	20	600	530	720	600	530	
10	720	600	530	7.	20	600	530	720	600	530	
15	720	600	530	7.	20	600	530	720	600	530	
20	720	600	530	7.	20	600	530	610	510	450	
30	600	500	440	6	00	500	440	440	360	320	
45	540	450	400	4	80	400	350	320	270	240	
60	450	370	330	3	80	310	280	260	220	190	
75	410	340	300	3	10	260	230	230	190	170	
80	380	320	280	3	00	250	220	220	180	160	
90	350	290	260	2	70	230	200	200	170	150	

CARACTÉRISTIQUES D'ÉMISSION DE LA CATHODE IEC 60613




COURBES D'ÉCHAUFFEMENT ET DE REFROIDISSEMENT IEC 60613

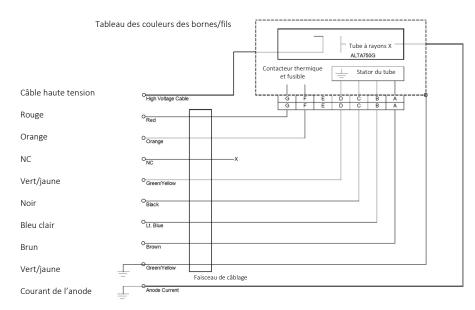

COURBES D'ÉCHAUFFEMENT ET DE REFROIDISSEMENT DE L'ENSEMBLE BOÎTIER DE TUBE

SCHÉMA DU BOÎTIER °

SCHÉMA DE CÂBLAGE

ENSEMBLE BOÎTIER DE TUBE À RAYONS X

CONSIGNES D'ÉLIMINATION

La récupération, l'élimination appropriée et la valorisation des dispositifs médicaux sont régies par la directive européenne DEEE et les dispositions de la législation nationale.

Le tube à rayons X contient du béryllium. L'ensemble boîtier de tube à rayons X contient du plomb pour la protection contre le rayonnement et de l'huile minérale. Le tube à rayons X et son boîtier ne doivent pas être mis au rebut dans les ordures ménagères ou les déchets industriels ; ils doivent être éliminés conformément à la réglementation locale.

Le tube et le boîtier peuvent être retournés à Richardson Healthcare afin d'être éliminés correctement.

Richardson Healthcare fait tout ce qui est en son pouvoir pour respecter l'environnement. Certains matériaux et composants sont recyclés. Des contrôles sont en place pour s'assurer que tous les produits répondent aux spécifications et aux exigences de sécurité.

Richardson Electronics, Ltd. | 40W267 Keslinger Road P.O. Box 393 | LaFox, IL 60147-0393 | (630) 208-2200